手拉手模子的5个论断和3个景况

发布日期:2025-01-15 09:33    点击次数:81

手拉手模子的5个论断和3个景况

图片

图片

咱们再连续AB、DE,如图4.3所示,咱们就不错解说出如下5组常用论断:

论断1:三组全等(如图4.4所示),均为旋转型全等。

论断2:三个等边三角形(如图4.5所示),即△ABC,△FCG,△CDE。

阐发:△FCE≌△GCD→CF=CG。

论断3:三组平行线(如图4.6所示),即AB// CE,FG // BD, AC // DE。

图片

论断 4:三个零散60°(如图4.7所示),即∠1=∠2=∠3=60°。

[分析]如图4.7所示,由△ACD≌△BCE,可得∠HAF=∠CBF,易得在△AFH和△BCF 中,∠1=∠FCB=60°。

图片

论断5:三个和差式(如图4.9所示)。

图片

转头:三点共线(B,C,D),五“三”出现。

通过以上的推导,咱们发现,手拉手模子内容上等于旋转型的全等,进而产生了五个“三”论断。

那图形旋转的内容又是什么呢?接下来咱们来谈判下。

咱们先分辨两个景况:

景况1:在图形旋转的经过中,咱们不改革其大小,也等于全等形.

如图4.10所示,△ABC绕着点C顺时针旋转到△A'DC,使得CB与CD重合,此时就产生了新的零散图形“等腰△ACA'”;

如图 4.11 所示,△ABP绕着点B顺时针旋转60°到△CBP’,使得AB与BC重合,此时就产生了新的零散图形“等边△BPP'”.

图片

通过上头两组图形的变换,咱们发现图形等量旋转的内容等于;全等形手拉手模子的构造,其变换特征为等线段、共端点、用旋转。

景况2:在图形旋转的经过中,咱们改革其大小,将其进行缩放,也等于一样形。

图片

由此咱们不错得回,只好三角形产生了旋转,就会有两组一样三角形产生,回顾口诀等于:一溜成双。

咱们发现图形等量旋转的内容等于:一样形手拉手模子的构造,其变换特征为比线段、共端点、用旋转。

景况3:这个景况相比零散,如图4.23所示,△AMN和△APQ均为等腰直角三角形,若是极点N和极点Q重合,很显著是要构造手拉手模子了,关联词它偏巧是锐角极点A重合在了一谈,说好的手拉手一谈走呢?

这还没完,它竟然连续了MP,又取MP的中点G,终末连续了NG,QG,完啦,全乱了……

不外先别急,既然有了中点就要有“中点四联思”(中位线、直角三角形斜边中线、三线合一、倍长中线)。

关联词怎样用呢?难谈果真莫得手拉手了吗?

真相连忙揭晓,如图4.24所示,咱们分别把△AMN和△APQ补成以A为直角极点的等腰直角三角形△AMB 和△APC。

图片

更多word版贵寓,请扫码加入“数学教研贵寓”常识星球:

​ 本站仅提供存储劳动,统共内容均由用户发布,如发现存害或侵权内容,请点击举报。



Powered by 新余璐吉电子商务有限公司 @2013-2022 RSS地图 HTML地图

Copyright Powered by站群系统 © 2013-2024